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Dynamic Response of a Pulse-Heated, Thick-Walled 
Hollow Sphere: Validation of Code Numerics (U) 

Robert E. Canaan 
Lawrence Livermore National Laboratory 

Volumetric pulse heating of a thick-walled hollow sphere is numerically investigated. The 
primary objective is to validate a variety of LLNL 30 hydrocodes for modeling the 
dynamic behavior ofJissile/Jissionable metals subject to rapid ‘fission-heating’ transients. 
The 30 codes tested include both DYNA3D and NIKE3D, as well as the ‘ASCI’ code, 
ALE3D. The codes are compared ‘head-to-head’ and are benchmarked against a 1DJinite 
difference solution to the problem that is derived from basic principles. Three pulse- 
heating transients are examined with full-width-half-maximum pulse durations of 41p, 
85ps, and 140~, respectively. These three transients produce a signi$cant range of 
dynamic responses in the thermo-elastic regime. We present results for dynamic radial 
displacements and stresses for each pulse, and also discuss which code features/options 
worked best for these types of calculations. In general, the code results are in excellent 
agreement for the simple system considered. Validation of code numerics in simple 
systems is a key first step toward future application of the codes in more complicated 
geometries (U). 
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Dynamic Response of a Pulse-Heated, Thick-Walled 
Hollow Sphere: Validation of Code Numerics (U) 

Robert E. Canaan 
Lawrence Livermore National Laboratory 

1.0 Introduction 

When fissile/fissionable metals are exposed to either an internal or external neutron 
source, fission heating and subsequent thermal expansion of the material can occur. Under 
certain conditions, the rate of fission energy production may follow a temporal ‘pulse’ in 
thermal power. For example, in the supercritical operation of a fast burst nuclear reactor, 
the power rises sharply’following a positive reactivity insertion, but then decreases rapidly 
due to negative reactivity feedback associated with the expansion of the system. Or, if a 
fissile/fissionable system is subcritical, pulse heating may result if the system is exposed to 
a significant burst of external neutrons. 

In either case, if the resulting heating pulse occurs rapidly enough, the temperature of the 
fissionable metal can rise faster than the material can respond by thermal expansion. In 
other words, there is a lag between the rise in temperature and thermal displacement of the 
material boundaries. Under such conditions, a portion of the thermal energy is converted 
to kinetic energy, producing vibrational displacements and potentially large dynamic 
stresses. This behavior is described in more detailed as follows. 

Early on in the pulse-heating transient, the mass-inertia effect mentioned above implies 
that while the material density remains essentially constant, there is an increase in material 
pressure as the temperature rises. Hence, the fissionable material is initially subject to a 
compressive stress. Later on, if the material remains elastic, the initial compression gives 
way to tension as the material elastically rebounds and also begins to finally expand in 
response to increasing temperature. After the heating pulse is complete and the total 
temperature rise is achieved, the expanded metal reaches a maximum displacement and 
peak tensile stress. Here, the dynamic expansion of the fissionable part exceeds the static 
expansion that would occur if the material were heated slowly. Furthermore, if the stresses 
remain below the tensile yield, another elastic rebound occurs, again sending the material 
into compression and contracting the material to a minimum expansion that is below the 
static value. If the material remains in an elastic regime throughout the transient, this 
‘ringing’ behavior will continue at the natural vibrational frequency of the part in question 
until it is eliminated by viscous damping. The final displacement of the material 



failures and even reactor disassembly have been reported for fast burst reactors subject to 
pulse heating transients [ 1,2]. Secondly, the dynamic displacements that result from such 
transients can lead to additional stresses if the heated parts are externally constrained. 
Also, the displacement of the fissionable material surfaces can provide a coupling 
mechanism between the hydrodynamic and neutronic aspects of the problem. 

Early investigations of pulse-heating transients from neutron exposure have been reported 
by Burgreen [3], who developed analytical expressions describing the dynamic behavior 
of thin 1D cylindrical and spherical shells. His method involves the replacement of 
temperature-induced stresses with equivalent body forces, surface tractions, and internal 
pressures. Austin [4] expanded upon the work by considering the dynamic response of 
thin, nested spherical shells. Analytical expressions were developed for the case of a 
heated, elastic inner shell concentric within a pi&k, unheated outer shell. The work of 
both Burgreen and Austin show that the dynamic stress amplitude in a pulse-heated body 
depends upon the magnitude of the temperature rise as well as the ratio of the heating time 
to the natural vibrational period for the body. Later, Reuscher [5] developed both 1D and 
2D finite difference techniques for analyzing the dynamic pulse behavior of the Sandia 
Pulsed Reactor II (SPR-II) fast burst reactor, essentially a hollow cylinder comprised of 
highly enriched uranium alloyed with IO-wt% molybdenum (U-lO%Mo). Reuscher’s 
techniques are not limited to thin shells and use a temperature rise function which is a 
proper representation of the fission-induced power pulse. These added complexities are 
not easily used with analytical methods. Recently, DiPeso [6] used some of Reuscher’s 
experimental results [5] to validate the 3D explicit hydrocode DYNA3D [7] for the case of 
a fissile U-lO%Mo solid rod irradiated by neutrons in the SPR-II. DiPeso [6, 81 also 
compared DYNA3D predictions to an analytical result for the case of a thin spherical shell 
subject to a linear ramp in temperature up to a constant, uniform value. DiPeso included 
the effects of plasticity in the calculations and found that for extremely short heating 
pulses, dynamic stresses exceed yield, and that subsequent thermal displacement is greatly 
diminished by plastic flow. 

In this paper, the dynamic behavior of a pulse-heated, thick-walled hollow sphere is 
examined using four distinctly different numerical techniques. The arbitrarily-sized fissile 

. sphere is calculationally subjected to pulse-heating transients with full-width-half- 
maximum (FWHM) heating times of 41ps, 85ps, and 14Ol.ts, which produce a wide range 
of dynamic responses. The primary objective of the study is to validate a variety of LLNL 
3D hydrocodes for modeling dynamic fission-heating types of transients. The 3D codes 
tested include the engineering codes DYNA3D [7] and NIKE3D [9], as well as the ‘ASCI’ 
code, ALE3D [lo]. The codes are compared ‘head-to-head’ and are benchmarked against 
a 1D finite difference solution to the problem that is derived from Reuscher’s early work 
[ 11. The test problem chosen for the present study involves a variety of simplifying 
assumptions (discussed in the next ‘section) in order to limit the validation to one of code 
numerics, as opposed to a full validation with direct comparison to experiment. As DiPeso 
points out, code validation in simple geometries “is a necessary step if calculations 
involving more complicated geometries are to be understood and trusted [6].” It is also 
hoped that by simplifying the problem we can gain additional insight into the pulse- 
fission-heating problem without diluting the fundamental physics. 
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Another objective of this work is to detail requirements/suggestions for successful 
application of each of the individual codes to this type of problem. To that goal, this report 
includes discussions of not only what techniques worked for each code tested, but also 
what techniques did not work. Sample input decks and limited code listings are included 
in the Appendices for cases of particular interest. 

Section 2.0, which follows, discusses many of the simplifying assumptions used to 
formulate the test problem. It also provides a general discussion of the four codes used to 
solve the problem. In Section 3.0, a variety of results are presented as we compare code- 
to-code predictions for three pulse transients and discuss in detail what models/code 
features were most successful. Section 4.0 offers concluding remarks and proposals for 
additional work. 

2.0 Methodology 

2.1 Problem Overview 

Numerical analysis of fission-heated mechanical systems typically begins with some sort 
of neutronics code that is capable of modeling neutron transport within the fissionable 
component of interest. If external neutron sources are present, the neutronics model may 
be additionally required to model neutron transport up to the boundaries of the fissionable 
part. Either way, the ultimate goal of such an analysis will be to determine the spatial and 
temporal history of the fission energy deposition in the fissile/fissionable component of 
interest. With this information in hand, the energy source term can then be directly 
coupled to the material resp.onse equations, i.e. the hydrodynamic problem, such that the 
resulting material displacements and thermal/mechanical stresses can be determined 
subject to the appropriate initial and boundary conditions. 

However, an important aspect to keep in mind when performing such an analysis is the 
highly coupled nature of this problem. Note that the spatial and temporal temperature 
distributions that result from fission heating will be highly dependent upon the neutronic 
characteristics of the problem. Case in point: if slow (thermal) neutrons externally 
irradiate a fissile component, a large portion of the fission energy deposition will be near 
the surface of the component; whereas, if fast neutrons are involved, the heating will be 
more volumetric. Yet, the nature of the heating itself may have important repercussions on 
the neutronics problem. For example, the fission-induced temperature changes in the 
nuclear material can significantly alter the material’s neutron absorption capabilities 
through processes such as Doppler broadening [ 111, which may promote either more or 
less fission energy deposition depending upon material composition. 

In addition to neutronic coupling through the thermodynamic aspects of the problem, 
there can also be direct coupling between the neutronics and the hydrodynamics. For 
example, the dynamic expansion and stress in the fission-heated component is highly 
dependent upon the spatial and temporal temperature/energy distribution, and thus the 
system neutronics as described above. Yet the expansion of the fissionable material itself 
provides neutronic feedback, such as the loss of fission neutrons that often results from an 

Dynamic Response of a Pulse-Heated, Thick-Walled Hollow Sphere: Validation of Code Numeri& (U) January 19.2000 3 



increase in the part’s surface area and/or decrease in material density. A loss of fission 
neutrons would of course influence the resulting fission energy deposition, and in the case 
of many fast burst reactors, this mechanism provides the reactor shutdown capability. 

Given the complexities described above, it is often desirable to decouple aspects of the 
pulse fission-heating problem for computer code validation purposes. In the analysis that 
follows, the neutron transport/kinetics problem will be ignored, and rather, attention will 
be focussed on the hydrodynamics problem of calculating the dynamic expansions and 
stresses that result when a hollow sphere is subjected to a variety of pulse-heating 
transients. In place of a neutronics model, a temperature or energy-rise function will be 
used which closely approximates the time-dependent energy deposition that occurs in 
pulse-heated fissile systems such as fast burst reactors. Additionally, heat transfer will be 
neglected since the dynamic effects of interest here typically disappear before there is time 
for heat transfer to significantly affect the initial temperature distribution. It will also be 
assumed that the spatial temperature distribution remains uniform throughout the hollow 
sphere. 

The test problem considered here is a thick-walled hollow sphere of U-lO%Mo, heated 
uniformly by a volumetric source that produces a nonlinear temporal pulse in thermal 
power. The inner sphere radius is arbitrarily taken to be 5.080 cm (2.0 in) with an outer 
radius of 7.620 cm (3.0 in). For simplicity, the various material parameters required by the 
codes are assumed to be both time and temperature independent. Table 1 gives a brief 
description of the problem including the material properties used for all numerical 
analyses reported here. The material properties of Table 1 were obtained from Reuscher 
[ 121 and are reasonably consistent with literature values for U-lO%Mo at room 
temperature. 

TABLE 1. Test Problem Description 

parameter 

inner radius 

outer radius 

material 

density 

Young’s Modulus 

Poisson’s Ratio 

Yield stress at offset 

Ultimate stress 

Linear CTE (a) 

Thermal conductivity 

Specific Heat (Cd 

value 

5.080 cm (2.0 in) 

7.620 cm (3.0 in) 

U(93%W3’)-lO%Mo 

17.2 g/cc 

9.Oe+ll dynes/cm2 (1.3 le+O4 ksi) 

0.3 

9.Oe+O9 dynes/cm2 (130.5 ksi) 

9.4e+O9 dynes/cm* (136.3 ksi) 

1.4e-05 “C-l 

0.06 Cal/s-cm-T 

0.028 Cal/g-T 
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We investigate a total of three heating pulses. The individual pulses are characterized by 
the maximum temperature rise they produce and by the duration of the pulse. The pulse 
duration is typically expressed as a full-width-half-maximum (FWHM), or pulse width at 
one-half maximum power. For each of the three pulses considered here, a maximum 
temperature rise of 420°C is specified, with pulse durations (FWHM) of 41p.s, 85ps, and 
14Ol.ts, respectively. These pulses are characteristic of those seen in fast burst reactor 
operations [2]. The pulse amplitude (or peak power) is adjusted such that the total energy 
deposited in the heated material remains the same for all three pulses. Additionally, the 
time to peak power is staggered. The 41l,u+FWHM pulse peaks at 1OOlts; the 85ls- 
FWHM pulse peaks at 300~s; and the 140lts-FWHM pulse peaks at 500~s. These pulses 
produce transient behavior with peak tensile/compressive stresses in the U-lO%Mo sphere 
that are well below the reported yield stress. Thus, only elastic material response is 
covered in this study. 

The transients described above are calculated using four computer codes, each having 
unique characteristics. Each of these codes will be described in some detail in the next 
subsection. The first code to be discussed is important in that it will serve as a benchmark 
for the others. This code is a 1D finite difference approximation to the equations of motion 
in a spherical geometry. Analytic solutions are difficult to obtain for thick-wall spheres 
that are heated nonlinearly in time. The remaining codes are all LLNL 3D hydrocodes and 
include two engineering codes { DYNA3D and NIKE3D) and one ‘ASCI’ code { ALE3D). 

2.2 Calculational Models 

2.2.1 One Dimensional Finite Difference Model 

The 1D calculational approach described below is based on the early work of Reuscher 
[ 11, who developed the technique for pulse-heated cylinders, spheres, and slabs. However, 
some errors in Reuscher’s derived equations were noticed for the spherical case [ 1,5]. 
Thus, some time will be spent here redeveloping the basic equations in spherical 
geometry. 

For a sphere subject to a time-dependent temperature rise that is a function of the radial 
coordinate only, the general form of the 1D displacement equation is 

2 au+2au 2u (l+v) aT 1 a2u - ------ 
ar2 r ar r2 (l-v)aar= c” 2’ (EQ 1) 

where u(r, t) is the radial displacement of the sphere; v is Poisson’s ratio; a is the linear 
coefficient of thermal expansion (CTE); T(r, t) is temperature; c is the speed of sound; and 
r and t are the radial and time coordinates, respectively. The above equation assumes 
elastic material behavior, with time and temperature independent properties. 

Equation 1 is solved for the radial displacements, u(r, t), subject to a specified spatial and 
temporal variation of temperature, T(r, t). By specifying the temperature function in this 
manner, the hydrodynamic problem is decoupled from the neutronic problem. After the 
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displacements are determined via Equation 1, the stress components throughout the sphere 
are calculated using the following relations for the radial and tangential (or hoop) stresses, 
respectively [ 131: 

Orr(Y, t) = (2p+h)g+q- (3h + 2p) aT(r, t) @Q 2) 

where 

and 

vE 
A = (1 +v)(l-2v) ’ 

p= E 
2(1 +v) ’ 

(EQ 4) 

(EQ 5) 

and E is Young’s Modulus. 

Equation 1 must be solved subject to an initial condition. Here, we specify that the sphere 
is at rest at time zero, in other words the displacement components throughout the body 
are all zero at time zero: 

up, 0) = 0 at t= 0. (EQ 6) 

The boundary conditions for Equation 1, since our sphere is hollow, specify .that the inner 
and outer surfaces are free boundaries. This is akin to requiring that the radial or normal 
stress at each surface is zero, or 

qJB9 0 = 0 , (EQ 7) 

where B is the radial coordinate of the surface. By applying Equation 7 with Equation 2, 
the boundary condition equation(s) can be written completely in terms of the boundary 
displacements, i.e. 

(2~ + h) au(r;B' ') + 2hu(r; " ') = (3h + 2~) aT(r = B, t) . (EQ 8) 

Reuscher [l] showed that the transient behavior of the system is sensitive to the function 
used to describe the temperature rise. He considered in Ref. [l] several temporal- 
temperature functions that are commonly used to describe the pulse behavior of fission- 
heated systems, including a linear ramp to a constant temperature, a cosine function, and a 
‘burst-integral’ function. Significant differences in the predicted maximum displacements 
and stress were noted between the various functions. The function that closest 
approximates the temperature rise during the power pulse of a fast burst reactor is the 
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‘burst-integral’ function, which is proportional to the integral of a symmetric power pulse, 
and is given by: 

T(t) = 
T tnax 

y (t - tpp)] + 1 ’ 
(EQ 9) 

where T,, is the maximum temperature rise; b is, the full-width-half-maximum 
(FWHM); and tpp is the time to peak power [ 141. Since the heated sphere is effectively 
adiabatic over the time period of interest here, the specific power may be found by 
differentiating Equation 9, i.e. 

q(t) = cg = 
3.52CT,,, 

b 

1 [ 
2 ’ 

exp - y(t-tpp) 
1 I 

+ 1 

(EQ 10) 

where q is the specific power and C is the specific heat (energy/mass-temperature). Figure 
1 plots Equations 9 and 10 for the first pulse transient that will be considered in this study, 
a 41~s FWHM pulse that peaks at 100~s and results in a maximum temperature rise of 
420°C. 

500.0 

s 
e 300.0 
z .- 
CK 

s ii 
t 200.0 
E 
c 

100.0 

I I 
1 .-----. Specific Power 11 
I- Ter lerature 11 

\ 
\ 
\ 

\ \ \ 

0.0 .-.___ 
0.0 50.0 100.0 150.0 200.0 250.0 300.0 

time (~.ls) 

Figure 1. Time history of temperature and specific power for the 41~~s FWHM pulse, 
with AT = 420°C. 
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The method used to numerically solve Equation 1 is an explicit finite-difference technique 
in which the spherical shell is subdivided into equally-spaced radial zones with nodes 
located directly on the boundaries. For the interior nodes, a second-order central- 
difference scheme is used to approximate the partial derivatives. The temperature is taken 
to be spatially uniform with a time variation specified by Equation 9. After the interior 
displacements are calculated for a given time step, the boundary node displacements are 
calculated using Equation 8, written in either forward or backward second-order 
differences depending upon whether the boundary is an inner or outer surface. After the 
displacements have been calculated across the body for a given time step, the stress 
components are determined from the second-order finite-difference forms of Equations 2 
and 3, again using forward/backward forms for the boundary nodes and central 
differencing for the interior nodes. According to Reuscher, the method is stable providing 
the time step, At, satisfies the following Von Neumann criteria: 

At22 2 2c2 + 2c2 ’ -- 
Ax2 r2i, min 

(EQ 11) 

where Ax is the spatial increment; c is the speed of sound; and ri,min is the minimum value 
of the radial coordinate for a hollow sphere. Equation 11 implies that the time step must be 
smaller than the time required for a stress wave to propagate across a single spatial 
increment. 

The 1D finite-difference solution to the above relations is included in Appendix A as a 
code listing. The code is given the name ‘newpu1se.f’ and is programmed in FORTRAN. 
This code may be applied to predict the dynamic displacements and stresses for either a 
pulse-heated hollow sphere or hollow infinite cylinder. Also, the code is not limited to a 
spatially uniform temperature, and the user may program a spatial temperature function 
that is appropriate for the system of interest. The numerics of the ‘newpu1se.f’ code have 
been validated against the numerical data presented by Reuscher in Refs. 1 & 5 for the 
case of a pulse-heated hollow cylinder. Specifically, ‘newpu1se.f’ was used to reproduce 
the 1D finite-difference solution that Reuscher presents for a 4 1~s FWHM, 420°C pulse in 
the SPR-II geometry. Because analytic solutions [3,4] to this problem are limited to thin 
shells, we will use the 1D finite-difference solution discussed above as a ‘benchmark’ 
solution to assess the performance of a variety of more sophisticated 3D codes. The 
overall characteristics of the various 3D codes are discussed in the subsections that follow. 

2.2.2 DYNA3D 

DYNA3D [7] is an explicit, Lagrangian hydra/structural mechanics code for analyzing the 
transient dynamic behavior of three-dimensional solids and structures. The code uses a 
finite-element formulation to’discretize 3D space and a finite-difference time 
discretization scheme. DYNA solves the complete set of material response equations and 
the energy equation without the approximations that lead to Equation 1. DYNA 
additionally has a wide range of available material models. In this analysis, Material 
Model ##4 is used, which is a thermo-elastic-plastic constitutive model associated with a 
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one-term equation of state (EOS) that relates the pressure rate to the total strain rate via a 
bulk modulus. The total strain is determined by adding/subtracting the thermal strain (i.e. 
o,AT) to the calculated mechanical strain. Although material properties for this material 
model can be fully temperature dependent, we again stick with the temperature- 
independent parameters given previously in Table 1. Also, the effects of plasticity are 
ignored. 

DYNA Material Model ##l requires the specification of a coefficient of thermal expansion 
(CTE or a). The CTE must be defined with respect to a reference temperature, Tref, for a 
given material at the start of the calculation. In the calculations that follow, the reference 
temperature is taken to be O”C, which is also the uniform material temperature at time 
zero. It is important to note that in DYNA, the specified CTE must be a linear secant value 
as opposed to a linear tangent value. Many literature sources report the tangent CTE as a 
function of temperature. The two CTE representations are related as follows: 

T 
1 

-aDYNA = T-T I 
a(T)dT 

ref T 
(EQ 12) 

where 

aDmA is the secant or average CTE required by DYNA, 

and 

a(T) is the tangent CTE at a given temperature. 

Note that for the present case of temperature-independent properties, the two CTE values 
given above are equivalent, i.e. CXD~NA = a. 

Since Material Model #4 is temperature dependent, the thermal effects option in Control 
Card #6 must be non-zero. This card allows the temperature-time history to be specified 
either via a load curve (a table), or by reading nodal temperatures from an external data 
file. In this analysis, the former option is used in which the nodal temperature for all nodes 
in the mesh is taken to be spatially uniform. This load curve is included in the DYNA 
input deck, and corresponds to a table of time vs. temperature values. These tables are 
generated in accordance to Equation 9 for each of the pulse transients considered. A 
sufficient number of entries are included in the table to accurately represent the desired 
thermal transient. 

A one-eighth-symmetry 3D mesh of a hollow sphere is created using the TRUEGRID [ 151 
mesh generator, using hexahedral eight-node elements. TRUEGRID meshes are used for 
all the 3D codes evaluated here. The initial conditions for this problem are specified by 
initializing all nodal velocities to zero. Symmetry boundary conditions on the x, y, and z 
faces of the hollow sphere are applied by constraining nodal motion normal to the 
respective symmetry planes. This is akin to allowing the inner and outer surfaces of the 
sphere to have free radial motion. Structural and/or numerical damping with time is not 
allowed. As DYNA is an explicit code, the stable time step is governed by the Courant 
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limit. DYNA automatically determines this maximum time step at each step in the solution 
process, and accordingly adjusts the time step to minimize the total number of steps which 
must be taken. A sample DYNA3D input deck for this problem (excluding the node and 
zone definition sections) is attached as Appendix B. A version of the DYNASD executable 
is used which allows the time-dependent plotting of nodal temperature in lieu of x- 
acceleration. All DYNA3D results presented here were obtained with Version 4.0.14. 

2.2.3 NIKE3D 

NIKE3D [9] is an implicit Lagrangian structural-mechanics code also based on the finite- 
element method for 3D spatial discretization. Because the code uses implicit time 
integration, it is considerably more efficient for static or low rate dynamic problems. Thus, 
it is not well suited to the class of problems considered here, which deal with shock- 
induced dynamics over microsecond time scales. However, the code was useful in this 
validation study in that it offered a numerical approach to the problem that was unique to 
the four codes tested (the other codes are all explicit). Interestingly enough, NIKE3D 
proved capable of providing accurate predictions for all pulse-heating transients 
considered, although there is certainly no advantage to using an implicit scheme here since 
the time step must be small enough to resolve the dynamic frequencies of interest. 
Because the implicit time integrator is unconditionally stable, the user must determine the 
appropriate time step for the problem at hand. Here, we use a fixed time step of 1.0~s for 
all three pulse transients considered with good accuracy. Also, the computational burden 
associated with implicit schemes is considerably greater than with an explicit approach. 
However, the NIKE3D computation times in this study were reduced by running the 
problems with a linear solver and using multiple processors. 

As was the case with the DYNA3D analysis, a thermo-elastic material model is required 
for the NIKE3D simulations (also Material Model #4). As with DYNA, the thermal effects 
option (Control Card #7) is used such that the temperature for all nodes in the mesh is 
spatially uniform and time varying according to a specified load curve (Equation 9). 
NIKE3D also expects a secant linear CTE as defined by Equation 12, and additionally 
requires the specification of a material reference temperature in Card #l of the Material 
Deck (set here to OOC). 

All NIKE simulations are run with a new ‘incompatible modes’ brick-element 
formulation. The old ‘incompatible modes’ option results in significant errors for isolated 
nodes in the problem. At the time of this writing, the new ‘incompatible modes’ option is 
invoked as follows. On Control Card #8, the ‘brick element formulation’ should be set to 
‘ 11’ [as opposed to ’ 12’ for the old ‘incompatible modes’ option]. Additionally, two 
changes are required for Material Card #l . First, the ‘element class’ card should be set to 
‘20’, and the last four columns of Material Card #l should contain ‘1139’ [columns 77- 
801. A sample NIKE3D input deck is attached as Appendix C for reviewing these cards. 

To reduce the computation times associated with running NIKE3D with a 1~s timestep, 
these problems are run with a linear solver on three processors. The former is 
accomplished by suppressing both equilibrium iterations (which are required for nonlinear 
problems) and stiffness matrix reformations. See Control Card #6 in Appendix C, where 

Dynamic Response. of a Pulse-Heated, Thick-Walled Hollow Sphere: Validation of Code Numerics (U) January 19,200O 10 



the time steps between equilibrium iterations and stiffness reformations are set greater 
than or equal to the total number of time steps in the problem. To run the problems on 
three processors, the ‘PSUB’ batch-submission script file should contain the line: 

setenv MP-THREAD-COUNT 3 

Other useful NIKE3D options include setting the ‘acceleration data dump flag’ on Control 
Card #5 to a value of ‘3’. This allows displacements to be directly calculated by NIKE3D, 
as opposed to having the displacements calculated within a post processor. This flag also 
allows the time-dependent plotting of nodal temperature, which is stored under ‘x 
velocity’. Also, to suppress numerical and structural damping, the default values for the 
Newmark integration parameters (Control Card #7) and the Rayleigh damping parameters 
(Material Card #l) are used. All NIKE3D results presented here are from Version 3.3.5. 

2.2.4 ALE3D 

ALE3D [lo] is a 3D arbitrary-Lagrangian-Eulerian hydrocode system being developed at 
LLNL as part of the Accelerated Strategic Computing Initiative (ASCI). ALE3D has both 
explicit and implicit hydrodynamics capabilities, as well as a variety of ancillary models 
that can be used to couple thermal diffusion, thermal radiation, and reaction chemistry to 
the continuum mechanics problem. ALE3D is finite-element based, and may be run in 
either a purely Lagrangian mode, a purely ‘Eulerian’ mode, or in an ALE mode. For the 
latter, the basic computational step consists of an initial Lagrangian step followed by a 
remap step in which the computational mesh is ‘relaxed’ to avoid mesh entanglement or 
distortion. During the mesh remapping step, advection of mass, momentum, and energy 
occurs across element boundaries. If the element boundary coincides with a material 
boundary, the advection step produces a mixed or multi-material element. 

In this paper, ALE3D is used in a purely-Lagrangian fashion since material displacements 
are expected to be small with minimal mesh distortion. The explicit hydrodynamics model 
is used both alone and in conjunction with the thermal diffusion package to simulate the 
dynamic behavior of the pulse-heated sphere. We also make use of ALE3D’s Engineering 
Material Model #54, which utilizes a modified Gruneisen EOS in conjunction with a 
thermo-elastic-plastic constitutive model. Unlike the one-term EOS used in conjunction 
with Material Model #t% (DYNA & NIKE), the Gruneisen EOS allows full coupling and 
hydrodynamic feedback between material pressure and energy/temperature. ALE3D’s 
Material Model #54 requires the tabular input of initial yield stress; Young’s modulus; 
Poisson ratio; CTE; plastic modulus; and specific heat as functions of temperature. Again, 
to be consistent with our previous code simulations, temperature-independent properties 
are used (see Table 1) and the effects of plasticity are ignored. 

With regard to material property input for this material model, a couple of important 
points need to be made. First, ALE3D expects a volumetric as opposed to a linear 
coefficient of thermal expansion (CTE). In general, the two are related as follows: 

P(T) = 3a(T) @Q 13) 
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where 

p is the volumetric CTE required by ALE3D, 

and 

a is the linear tangent CTE. 

Equations 12 and 13 can be combined in order to relate the CTE required by ALE3D to 
that required by DYNA3D: 

P(T) = 3 
d 

aDYNA+(T-Tref)dTaDYNA (EQ 14) 

Secondly, ALE3D uses a specific heat at constant volume, C,, to relate zonal temperature 
and energy. However, during material property input for Model #54, the keyword 
‘specificheat’ refers to a specific heat at constant pressure, C,. The two specifics heats are 
related in the code as follows: 

(EQ 1% 

where y is a Gruneisen EOS parameter, p is the volumetric CTE, and T is temperature. 

In the present approach, a temperature-independent specific heat is desired in order to 
achieve consistent results with earlier models. However, initial specification of that 
parameter using the ‘specificheat’ keyword resulted in a temperature-dependent specific 
heat to be defined according to Equation 15. Thus, a relationship between zonal energy 
and temperature was established that was inconsistent with previous approaches. Once 
this problem was realized, it was circumvented by directly specifying the desired specific 
heat as C, using the ‘tablcv’ keyword. ALE3D users utilizing Engineering Material Model 
#54 should keep the relationship of Equation 15 in mind when providing specific heat data 

L to the code. 

ALE3D is an energy rather than a temperature-based code. Its hydrodynamic equations of 
state additionally allow coupling between material energy/temperature and dynamic 
changes in volume/pressure. Thus, for the majority of the transient cases considered here, 
an energy-deposition (rate) load curve rather than a temperature load curve is used to 
define the ALE3D fission pulse, i.e. Equation 10 is used rather than Equation 9. This is 
accomplished in ALE3D using the ‘heatgen fixed’ keyword in the Boundary Block in 
conjunction with a table of energy rate vs. time values. Note that Equation 10 defines the 
pulse in terms of a specijic energy deposition rate (power per unit mass). The power 
should be normalized by mass, not initial volume, since the volume fluctuates during the 
course of the transient. The other initial and boundary conditions are specified in a similar 
manner to that of the other 3D codes. As before, the heating is spatially uniform. 
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Despite that fact that ALE3D is an energy-based code, the fission pulse can also be 
specified in the same way it was prescribed with DYNA3D and NIKE3D, i.e. in terms of 
nodal temperatures vs. time. Here, we use both approaches (i.e. specified energy and 
specified nodal temperature) for the first transient to be considered. In the second 
approach, Equation 9 is used to specify the pulse in terms of nodal temperature, as was 
done with DYNA and NIKE. This is accomplished in ALE3D using the ‘heat temperature’ 
keyword in conjunction with a temperature vs. time table. Again, there are no spatial 
temperature gradients. However, unlike the energy-based approach, which requires only a 
Hydro Block, the nodal temperature approach requires an ALE3D Thermal Block 
(thermal diffusion model) in addition to the Hydro Block. This is because the ‘heat 
temperature’ keyword is typically used to prescribe nodal-temperature boundary 
conditions for the thermal diffusion model. However, in this case it is used to prescribe the 
temperature history of all of the nodes in the mesh. Furthermore, for this case there must 
be full coupling between the hydro and thermal solvers. The results for both ALE3D 
approaches to this problem are presented and discussed in Section 3.0. Sample ALE3D- 
generator input files for both approaches are included in Appendix D. 

All ALE3D simulations are run using Version 2.8.4. Previous versions were discovered to 
have a ‘bug’ associated with the time-dependent output of nodal displacements when the 
code was run in a purely Lagrangian manner. 

3.0 Results 

This section is organized as follows: First, results will be presented that correspond to the 
one-dimensional finite difference ‘benchmark’ to the problem, described previously in 
Section 2.2.1. These results will be presented and discussed for the first pulse transient 
considered, a 41~s FWHM pulse with a maximum temperature rise of 4209C. Secondly, 
the 3D codes tested will be compared ‘head-to-head’ with the finite difference benchmark. 
Comparisons will be made for dynamic radial displacements and tangential or ‘hoop’ 
stresses at the inner and outer surfaces of the sphere. The effects of different numerical 
approaches taken with some of the codes will be examined, as will the issue of mesh 
independence. A total of three pulse transients are studied, starting with the 41ps FWHM 
case, and then examining longer pulses of 85~s and 140~s. 

3.1 1D Finite Difference Results 

One-dimensional, finite-difference results are presented for the 41~s FWHM case to 
illustrate some of the physics details associated with pulsed volumetric heating in 
spherical structures. In this case, the hollow U-lO%Mo sphere is subjected to the thermal 
pulse seen earlier in Figure 1. The 4 lps FWHM pulse reaches a peak specific power of 
l.O6MegaWatts/gram at time = lOOlts, producing a maximum temperature rise of 420°C 
by 2OOl.t~. Since heat transfer is neglected over these time scales, the maximum 
temperature remains at 420°C for the duration of the calculated transient (3OOps). 

The calculated results for this transient are seen in Figures 2-5. All 1D finite difference 
results correspond to a nominal timestep of 0.Olp.s and a spatial discretization of 20 nodes 
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throughout the spherical shell. Convergence of these results was examined by 
independently varying the timestep (0.1~s O.Olps, O.OOlps) and spatial discretization (20, 
50, 100 nodes), within the stability limits of Equation 11, to assure that the data are 
temporally and spatially converged. Also, the nominal second-order difference 
approximations were replaced with third-order differencing. In all cases, changes in the 
reported results were not perceptible. Thus, it is concluded that the results reported herein 
are spatially converged with N = 20 nodes (19 zones). 

Figure 2 shows the predicted radial displacements as a function of time for both the inner 
and outer surfaces of the sphere. By comparing the temperature rise function of Figure 1 to 
the nodal displacements of Figure 2, one can indeed see the initial inertial lag between the 
expansion of the sphere and the rising temperature. This is particularly evident of the inner 
surface, whose internal constraints differ from those imposed on the outer surface. 

* Specifically, the inner surface must expand outward against the inertia of the rest of the 
spherical shell. Because of this inertial lag, the thermal energy does not go immediately 
into material expansion, but rather into an initial increase in the material pressure, as seen 
in Figure 3. This increase in pressure corresponds to a compressive hoop stress at early 
times, seen in Figure 4. Because of the greater internal constraints on the inner surface, the 
hoop stresses are greatest at that location. 

At roughly lOOps, which corresponds to the peak of the power pulse, the elastic material 
experiences a rebound. Also, the material finally begins to expand as a result of the still 
increasing temperature. This throws the sphere into a tensile state, with corresponding 
negative pressures. The peak tensile stress (and maximum negative pressure) occurs at 
roughly 15Ops, at which time the peak radial displacement also occurs. As shown in 
Figure 2, the maximum displacement for both surfaces exceeds the static limit, or the 
expansion that would result if the material were heated slowly. For the outer surface, the 
maximum displacement exceeds the static value by -34%; whereas, for the inner surface 
the maximum displacement is over 74% greater than the static value. Also, the results 
show clearly that the critical stress region occurs at the inner surface where the maximum 
dynamic hoop stress occurs. Here, a peak tensile stress of -8Oksi (80,OOOpsi) is reached, 
which is still below the elastic yield of -130ksi. Beyond 15Ops, another elastic rebound 

.‘ occurs, again throwing the sphere into a compression with a maximum compressive stress 
(at 200~s) of equal magnitude to the maximum tensile stress. The corresponding radial 
displacements reach a value that is contracted with respect to the static limits. These 
dynamic, elastic oscillations continue at the natural vibrational frequency of the hollow 
sphere, given by: 

O= 2(E) 

(1 -v)pR2 ’ 
(EQ 16) 

where o is the vibrational frequency; E is Young’s Modulus, v is Poisson’s Ratio, p is 
density, and R represents the mean radius of the spherical shell. The vibrational period that 
corresponds to Equation 16 is just, 

@Q 17) 
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For the present geometry, Equation 17 gives a natural vibrational period of 103~s which 
is consistent with the behavior seen in Figures 2-4. Since structural or numerical damping 
is not included in the calculations, the amplitude of the oscillations does not diminish with 
time. 

Figure 5 plots hoop stress against the total radial strain for this pulse. The behavior of 
Figure 5 is consistent with the previous figures. Namely, the sphere is initially thrown into 
a compressive state, with the inner surface hoop stress exceeding the compressive stress of 
the outer surface by roughly a factor of 2. By nature of the geometry, the inner surface has 
a smaller strain at this time compared to the outer surface. Then, as the compression 
lessens, both inner and outer surfaces pass into tension at the same time and at the same 
total strain. At the peak tensile state, the inner surface stress again exceeds that of the outer 
surface by roughly a factor of 2 (80 vs. 40ksi, respectively). As the oscillations continue in 
the elastic regime, both surfaces move along the same stress/strain line of equal slope, 
corresponding to the specified elastic modulus. 
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Figure 2. Radial displacement history of inner and outer surfaces for the 41~~s 
FWHM pulse, AT = 420°C. 
[ 1D finite difference results with At=O.Olps, N=20 nodes] 
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Figure 5. Hoop stress vs. strain for 41~ FWHM pulse, inner and outer surfaces. 

3.2 Comparison of 3D Codes to 1D Finite Difference Results 

3.2.1 41p.s FWHM, 420°C Pulse 

The majority of the 3D pulse-heating simulations were performed on the TRUEGRID- 
generated mesh shown in Figure 6. This one-eighth-symmetry sphere has an inner radius 
of 5.08cm (2.0”) and an outer radius of 7.62cm (3.0”). This mesh has a total of 20,480 
zones with 16 zones through the radial thickness. Symmetry planes exist at x=y=z=O, 
allowing the inner and outer surfaces to behave as free boundaries. 

Figures 7 and 8 respectively show the predicted radial displacements and hoop stresses for 
the first pulse transient. Results from the 3D codes are shown as symbols and the 1D finite 
difference results are shown as a solid line. Results are presented for both the inner and 
outer surfaces of the sphere. Additionally, Table 2 compares the predicted maxima/minima 
values for displacement and hoop stress for both surfaces. 

In general, the agreement between the four codes is excellent, especially considering the 
diversity of the numerical approaches. The overall dynamic trends, vibrational period, and 
pulse amplitudes are all well predicted. There are some slight discrepancies however. For 
example, while the radial displacements seem to be very well predicted (cf. Figure 7), 
there is a small but consistent overshoot in the maximum hoop stress predicted by the 1D 
finite difference code compared to the 3D finite element codes (cf. Figure 8). This 
overshoot is primarily noticeable for -the inner surface. 
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Figure 6. Nominal resolution finite element mesh with 16 radial elements. 
[inner radius = 2.0 in., outer radius = 3.0 in.] 

TABLE 2. Code Comparison of Max./Mb. Displacement and Stress, 411~9 FWHM, 420°C P&e 

* One-dimensional finite difference 
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Figure 7. Code comparison of radial displacements for 41~s FWHM pulse with 
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Figure 8. Code comparison of hoop stresses for 41~s FWHM pulse with AT = 420°C, 
inner and outer surface behavior shown. 
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One of the possible reasons for the stress overshoot of the finite difference code involves 
the distinction between ‘zone centered’ and ‘nodal’ variables. For all the finite element 
codes used in this study, stress is considered a ‘zone-centered’ quantity. Hence, for 
DYNA3D, NIKE3D, and ALE3D, the reported hoop stress for the inner and outer surfaces 
is actually associated with a point that lies just short of the material boundary. However, 
for the finite difference code, stress is a nodal quantity. Since the ‘first’ and ‘last’ radial 
nodes lie directly on the inner and outer boundaries respectively, the finite-difference- 
calculated stress at these locations is truly associated with a point on the material 
boundary. On the other hand, radial displacement is a nodal variable for all four codes 
considered. Hence, it is possible for the four codes to have excellent agreement with 
respect to predicted displacements, and yet have small discrepancies between the finite 
element and finite difference methods with respect to predicted stresses. Even more 
specifically, compared to the finite element codes, the finite difference code should tend to 
predict a slightly larger stress associated with the inner surface, and a slightly lower stress 
for the outer surface. Thisbehavior is clearly seen for the case of the inner surface, but for 
some reason is not evident for the outer surface. 

On another note, it should be pointed out that for the ALE3D results shown above, the 
fission pulse was specified in terms of specific power vs. time (Equation lo), as opposed to 
temperature vs. time (Equation 9) like the other codes. Nevertheless, it also possible to 
specify the ALE3D pulse with a time vs. temperature table by defining all of the nodes in 
the mesh to be a single nodeset, and then using the ‘heat temperature? keyword to assign a 
temperature table to the nodeset (see Appendix D). The latter approach however requires 
full coupling between the hydrodynamics solver and the thermal diffusion solver as 
explained in Section 2.2.4. 

Figures 9 and 10 respectively compare ALE3D-calculated results for zonal temperature 
and displacement, in each case using both an energy table approach (‘hydro only’) and a 
temperature table (‘hydro + thermal’) method. In Figure 9, clearly something is amiss in 
that the two approaches give different results for zonal temperature. Part of the problem is 
that ALE3D carries two temperature fields, a zonal temperature (plotted in Fig. 9), and 
also a nodal temperature. The two temperature fields are used to link the thermal diffusion 
package to the hydrodynamics model. For the ‘hydro only’ case, the zonal energy 
deposition is specified and zonal temperature is calculated directly, and correctly, from 
energy. However, for the ‘hydro + thermal’ case, nodal temperature is specified and 
clearly some error is introduced in converting the nodal temperature field to energy and 
then back to zonal temperature. 

In Figure 9, this results in a 5-10°C overshoot in zonal temperature for the ‘hydro + 
thermal’ case compared to the.‘hydro only’ case (which correctly peaks at 420°C). Figure 
9 also shows that both zonal temperatures oscillate slightly due to the adiabatic 
compression/expansion of the sphere; however, this effect is magnified in the ‘hydro + 
thermal’ case. Also, the differences in the predicted zonal temperature between the two 
approaches lead to small errors in the predicted displacement, as seen in Figure 10. Here, 
the ‘hydro + thermal’ case overshoots the ‘hydro only’ results by roughly 0.5mil and is 
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slightly out of phase as well. The exact numerical causes for the above discrepancies are 
still being investigated at the time of this writing. The remaining pulse transients are 
calculated using the ‘hydro only’ approach in ALE3D. 

The last issue to be examined with regard to the first pulse is that of mesh independence. 
To this end, the nominal mesh of Figure 6 was rezoned such that the number of elements 
through the thickness of the sphere was doubled. The rezoned mesh is shown in Figure 11 
and has a total of 129,024 elements, with 32 elements or zones through the radial 
thickness. The calculations for the 41~s pulse were repeated using the ‘fine’ mesh in 
conjunction with DYNA3D and ALE3D. Table 3 compares the calculated maxima/minima 
boundary displacements and stresses for each code using the nominal vs. the ‘fine’ mesh. 

Figure 11. ‘Fine’ resolution finite element mesh with 32 radial elements. 

TABLE 3. Comparison of Nominal vs. ‘Fine’ Mesh Results for 41~ FWHM, 420°C Pulse 

Outer Surface Inner Surface 

Code “max Gin %,max %3,min umax Gin ~ee,max %O,min 

DYNA3D, nominal 23.6mils 11.7mils 38.6ksi -37.7ksi 20. lmils 3.6mils 76.0ksi -74.7ksi 

AL,E3D, nominal 23.8 11.8 38.7 -38.0 20.2 3.6 ’ 75.7 -75.2 

DYNA3D, ‘fine’ 23.6 11.7 38.1 -37.3 20.1 3.5 76.9 -75.7 

AL,E3D, ‘fine’ 23.8 11.8 38.2 -37.6 20.2 3.6 76.7 -75.7 
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The results of Table 3 indicate that for a given code, essentially no change in predicted 
displacements occur when the mesh is rezoned. However, there are small changes (~2%) 
with respect to predicted hoop stresses. Namely, the outer surface hoop stress tends to 
decrease as the mesh is refined and inner surface hoop stress tends to increase with mesh 
refinement. 

This trend is consistent with the previous discussion regarding ‘zone centered’ vs. ‘nodal’ 
variables. The inner/outer surface displacements are associated with nodes that always lie 
on the material boundaries, regardless of mesh refinement. On the other hand, stress is a 
zone centered variable. Thus, as the mesh is refined, the center of the boundary zones 
moves slightly closer to the actual boundary. In the case of the inner spherical surface, this 
tends to slightly increase the hoop stress for the finer mesh; whereas, the converse is true 
for the outer surface. The conclusion here is that with regard to displacements, the 
nominal mesh of Figure 6 is sufficiently refined. With regard to predicted hoop stress, the 
nominal mesh is within a few percent of convergence. Results for the remaining transients 
are presented using the nominal mesh of Figure 6. 

3.2.2 85ps FWHM, 420°C Pulse 

The next case to be considered more than doubles the pulse width with respect to the 
previous case. Here, we consider an 85~~s FWHM pulse that again results in a peak 
temperature rise of 420°C. However, the pulse amplitude is decreased to 0.5 lMW/g, 
providing the same total energy input as before. All pulses considered as well as their 
resulting temperature rises, are shown in Figure 12. 

Figure 13 shows the dynamic displacements of the inner and outer spherical surfaces for 
the 85~s pulse. As one would expect, the natural vibrational period of the oscillations 
remains unchanged (103~s). However, the amplitudes of the dynamic displacements are 
significantly reduced compared to the 4 1~s pulse. Roughly, the displacement amplitudes 
have been reduced by a factor of four and the maxima/minima displacements vary within a 
couple of mils about the static displacement values. Also, the first displacement oscillation 
consistently has a slightly lower amplitude compared to subsequent oscillations. This is 
possibly due to the fact that for this transient, the heating time completely overlaps the first 
oscillation. As before, the agreement between the four codes is quite good. 

Figure 14 depicts the corresponding dynamic hoop stresses for the inner and outer 
surfaces. Consistent. with the decrease in the displacement amplitudes, the peak hoop 
stresses for the inner and outer surfaces have been reduced by roughly a factor of four with 
respect to the 41j.t~ pulse. However, the hoop stresses for this pulse are still quite 
significant with the inner surface again producing the highest stress of close to 20ksi 
tension. The greatest stress also occurs during the first oscillation, which is likely due to 
the extended heating time compared to the shorter 41l.t~ pulse. As with the previous pulse, 
the finite difference code tends to slightly overshoot the inner surface hoop stress 
predicted by the 3D finite element codes. Specifically, the finite difference code gives 
19Sksi at t=350ps; whereas, DYNA3D, NIKE3D, and ALE3D respectively predict 
18Sksi, 18.6ksi, and 18.5ksi. It has been shown that as the mesh is further refined, the 
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Figure 12. Temperature and specific power histories of pulses with FWHM 
of 41ps, 85ps, and 140~s. 

finite element codes’ stress predictions will move closer toward the finite difference 
results, at least as far as the inner surface is concerned. 

3.2.3 14Op.s FWHM, 420°C Pulse 

The last pulse to be considered is a 140~s FWHM pulse, shown along with its 
corresponding temperature rise in Figure 12. This pulse peaks at 500~s with a specific 
power of 0.3 lMW/g, again resulting in a 420°C rise in temperature. The predicted radial 
displacements are shown in Figure 15 for the boundary surfaces. This pulse is of 
sufficiently long duration that the displacements essentially ramp up to their static limits, 
or the displacement values that would result if the material were heated slowly. However, 
careful examination reveals that there are still oscillations at 103~~s intervals in the 
calculated displacements, although the displacement amplitudes are no more than 
fractions of a mil. Again, the four codes are in good agreement, with all of the 3D codes 
resolving the subtle displacement oscillations. 

Figure 16 plots the corresponding stresses for the 140~s pulse. Quite remarkably, despite 
the practically negligible displacement amplitudes, the dynamic stresses in the part are 
still relatively significant, a reflection of the large modulus for U-lO%Mo. Again, the inner 
surface sets the maximum hoop stress at roughly 4000psi. The first two hoop stress 
oscillations are larger than subsequent oscillations as a result of the heating time extending 
past the second oscillation for this transient. The codes are in good agreement for this 
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Figure 13. Code comparison of radial displacements for 85~s FWHM pulse with 
AT = 420°C, inner and outer surface behavior shown. 
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with AT = 420°C, inner and outer surface behavior shown. 
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Figure 16. Code comparison of hoop stress for 140~s FWHM pulse with 
AT = 42O”C, inner and outer surface behavior shown. 
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case with regard to computed stresses. There is less than a 2% deviation between code 
predictions for the maximum predicted hoop stress. 

4.0 Conclusions and Future Work . 

Volumetric pulse heating of a thick-walled hollow sphere was investigated using four 
computer codes, each with unique capabilities. A total of three ‘fission-heating’ transients 
were considered that produced a range of dynamic effects. In general, excellent agreement 
was obtained in the code-to-code comparisons, which included both engineering as well as 
‘ASCI’ codes. This process has verified the numerics of the codes for pulsed-heating 
dynamics in a simple geometry with simplified material models. It has also pointed out 
which features/options of the codes work best for these types of calculations. Of interest 
for future work is the application of the codes, particularly the ASCI code ALE3D, to 
more complicated nuclear systems for which there are accurate experimental 
measurements of displacement and stress. For example, the experimental data from 
Reuscher [5] in the Sandia Pulsed Reactor II provide an ample testbed for future modeling 
efforts involving more complicated material models with still relatively simple 
geometries. 
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7.0 APPENDIX A 

This appendix contains the code listing for the 1D finite-difference code ‘newpulse.f’, as 
described in Section 2.2.1. Many variables are set during interactive execution; however, 
others are not and thus require code editing and recompilation. For example, the desired 
spatial temperature function must be defined in the code as well as the desired material 
properties. The default material is U-lO%Mo with constant properties. 

program newpulse 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

code variables 

material property variables, input in cgs units 

yngmod = Young's Modulus (dynes/cm"21 
csonic = speed of sound in fuel (cm/s) 
density = fuel density (g/cmA3) 
cte =,th. expansion coeff. of fuel (l/C) 
poiss = Poisson's Ratio 

other variables created during code execution 

displ(i) = displacement of node i at time k-l, cm 
disp2(i) = displacement of node i at time k, cm 
disp3(i) = displacement of node i at time k+l, cm 
de1 = distance between nodal mesh points, cm 
deltat = the time step, s 
maxtime = maximum number of time steps to be taken 
nodes = number of nodes 
npmax = maximum number of nodes 
nprt = print interval 
rinner = inner reactor radius, cm 
router = outer reactor radius, cm 
strain1 = inner node radial strain 
strainn = outer node radial strain 
time = total elapsed time since beginning the transient, s 
tpoa = time to peak power, s 
temp = temporal temperature function at time k+l, C 
tmax = maximum temperature reached, C 
taul = hoop stress at inner node, dynes/cm"2 
taun = hoop stress at outer node, dynes/cm"2 
func(i) = spatial temperature profile, fixed for short timescales 
fwhm = pulse width, s 
x(i) = radial distance from reactor CL to node i, cm 

c *********************************************************** 

C define required data and control parameters 
C ***************x******************************************* 

C 

implicit double precision(a-h,o-z), integer(i-n) 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

parameter(npmax=lOOOO) 

dimension x(npmax),func(npmax),displ(npmax) 
dimension disp2(npmax),disp3(npmax) 

OUTPUT FILES AND UNITS 
***NOTE, output units differ from input units*** 
time plot, inner surface temperature, us vs. C 
open(unit=ll, file='templ.out',status='new') 
time plot, outer surface temperature, us vs. C 
open(unit=12, file='tempn.out',status='new') 
time plot, inner surface radial displacement, us vs. mils 
open(unit=13, file='displ.out',status='new') 
time plot outer surface radial displacement, us vs. mils 
open(unit=14, file='dispn.out',status='new') 
time plot inner surface hoop stress, us vs. ksi 
open(unit=15, file='taul.out',status='new') 
time plot outer surface hoop stress, us vs. ksi 
open(unit=16, file='taun.out',status='new') 
spatial temperature profile, inches vs C 
open(unit=17, file='profile.out',status='new') 
inner surface hoop stress vs. strain, in/in vs. ksi 
open(unit=18, file='svsel.out',status='new') 
outer surface hoop stress vs. strain, in/in vs. ksi 
open(unit=19, file='svse2.out',status='new') 

***define the geometry here*** 
g=l for a cylinder, 2 for a sphere 

write(*,*) 
write(*,* ) 'NEWPULSE, R.E. Canaan based on J.A. Reuscher, 1999' 
write(*,*) 
write(*,* ) 'Enter 1 for a hollow cylinder, 2 for a hollow sphere' 
read(*,*) g 

write(*,*) 

if(g.eq.1) then 
write(*,*) '***Cylindrical Geometry***' 

endif 
if(g.eq.2) then 

write(*,*) '***Spherical Geometry***' 
endif 

write(*,*) 

write(*,* ) 'Enter the inner radius in cm' 
read(*,* ) rinner 

write(*,*) 'Enter the outer radius in cm' 
read( *,*) router 

write(*,*) 
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C 

C 

C 

C 

C 

C 

C 

write(*,*) -***No~p***t 
write(*,* ) 'The time step and spatial discretization are' 
write(*,* ) 'specified internally and must meet the appropriate' 
write(*,*) 'stability criteria!' 
write(*,*) 

pi=4.0*atan(l.O) 

***define the time step, it must meet the stability criteria*** 

[time duration of transient=deltat*maxtime] 
deltat = l.Oe-08 
write(*,* ) 'Using a time step of ',deltat*l.Oe+06,' us.' 
write(*,*) 
maxtime = 30000 
write(*, *) 'Run duration = ',maxtime*deltat*l.Oe+O6,' us.' 
write(*,*) 

***define the spatial discretization*** 

nodes = 100 
write(*,*) 'Using a total of ',nodes,' node points' 
write(*,*) 

***these constants determine the temperature pulse.shape using 
Reusher's burst function*** 

write(*, *) 'SPECIFY PULSE CHARACTERISTICS' 
write(*,*) 
write(*,* ) 'Enter the FWHM of the pulse in us' 
read(*,*) fwhm 
fwhm=fwhm*l.Oe-06 

C 

C 

C determine the speed of sound, c, in cm/s 

write(*,*) 'Enter the time to peak power in us' 
read(*,*) tpo2 
tpo2=tpo2*1.0e-06 

write(*,* ) 'Enter the desired max. temperature rise, in C' 
read(*,*) tmax 

write(*,*) 

***print outputto file every nprt timesteps*** 

nprt = 100 

***define material properties in cgs units*** 

data yngmod,poiss,density,cte/9.Oe+ll,O.3,17.2,1.4e-O5/ 

write(*,* ) 'Material properties based on U-lO%Mo 
write(*,*) 
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cnum=yngmod*(l.O-poiss) 
cden=(l.O+poiss)*(l.O-2.*poiss)*density 
csonic=(cnum/cden)**O.5 

C 

C 
c ************************************~~~~~~~~~~~~~~~~~~~ 
C set up the mesh 
c ********************************x*****~~~~~*~~~~~~~~~~~~~ 
C 

del=(router-rinner)/(nodes-1) 
C 

C ***define the spatial temperature distribution*** 
C 

write(*,*) 'Select the desired spatial temperature profile:' 
write(*,*) 
write(*,*) \*X*W~ING"**' 
write(*,*) 'Selections 2 and 3 should be tailored for a' 
write(*,*) 'specific geometry. Please edit the source code \ 
write(*,*) ‘and specify a spatial temperature profile which' 
write(*,*) ‘is correct for your geometry’ 
write(*,*) 
write(*,*) ' Enter 1 for uniform temperature' 
write(*,*) ' Enter 2 for an arbitrary cosine distribution' 
write(*,*) ' Enter 3 for an arbitrary fission spectrum' 
read(*,*) iflag 

C 

C 

C 

C 

C 

write(*,*) 
write(*,*) 'INPUT COMPLETE' 
write(*,*) 
write(*,* ) 'FOR OUTPUT UNITS, SEE CODE COMMENTS' 

x(l)=rinner 

if(iflag.eq.1) then 
func(1) = 1.0 

elseif(iflag.eq.2) then 
func(l)=cos((pi/20.32)*(x(l)-2.0)) 

else 
func(1)=0.41482+(0.35594*x(1))-(0.064311*x(1)**2) t 

& (0.0027732*~(1)**3) 
endif 

x(nodes)=router 

if(iflag.eq.1) then 
func(nodes) = 1.0 

elseif(iflag.eq.2) then 
func(nodes)=cos((pi/20.32)*(x(nodes)-2.0)) 

else 
func(nodes)=0.41482+(0.35594*x(nodes)) - 

& (0.064311*x(nodes)**2)+(0.0027732*x(nodes)**3) 
endif 

C 

do 10 i=2,nodes-1 
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x(i)=x(i-1) + de1 
C 

if(iflag.eq.1) then 
func(i) = 1.0 

elseif(iflag.eq.2) then 
func(i)=cos((pi/20.32)*(x(i)-2.0)) 

else 
func(i)=0.41482+(0.35594*x(i))-(0.064311*x(i)**2) + 

& (O.O027732*x(i)**3) 
endif 

10 continue 
C 
c ***XX****X**XXX***k**X****X*******X*****~~~~~~~~~~~~~~~~~~~ 

C apply the initial conditions 
C ******************XX****XX********XX*k**~~~~~~~~~~~~~~~~~~~ 

C 

do 20 i=l,nodes 
displ(i)=O.O 
disp2(i)=O.O 
disp3(i)=O.O 

20 continue 
C 
c ************************XX*XX*******X******************** 

C define the coefficients for the displacement equs. 
c **********************XXX***k****X**X***~~~~~~~~~~~~~~~~~~~ 
C 

termal=(csonic*csonic*deltat*deltat)/(del*del) 
terma2=(g*csonic*csonic*deltat*deltat)/(2.O*del) 
termbl=2*termal 
termb2=g*csonic*csonic*deltat*deltat 
termcl=termal 
termc2=terma2 
termdl=((l+poiss)/(l-poiss))*(cte*terma2/g) 

C 

C ***calculate other needed constants*** 
C 

xlam=(poiss*yngmod)/((l.O+poiss)*(l.O-2.O*poiss)) 
xmu=yngmod/(2.0*(1.O+poiss)) 

C 
c *********************************x******~~~~****~********** 

C begin the time march 
C *********************************************************** 

C 

do 100 k=l,maxtime 
time=k*deltat 
temp=tmax/(exp((-3.52/fwhm)*(time-tpo2)) + 1.0) 

C 

C ***solve for displacements in nodes 2 thru n-l*** 
C 

do 35 i=2,nodes-1 
disp3(i)=disp2(i+l)*(termal+terma2/x(i)) + 

& disp2(i)*(2.0-termbl-termb2/x(i)**2) + 
& disp2(i-l)*(termcl-termc2/x(i)) - 
& termdl*(temp*func(i+l) - temp*func(i-1)) - 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

& displ(i) 
35 continue 

***solve for displacements at the boundary nodes*** 

inner node 

termel=3.0xxlam + 2.O*xmu 
terme2=2.0xxmu + xlam 

xnuml=disp3(3)-4.0xdisp3(2)+(termel/terme2)* 
& 2.0*del*cte*temp*func(l) 

if(g.eq.1) then 
xdenl=(2.0*del*xlam)/(terme2*x(l)) - 3.0 

endif 

if(g.eq.2) then 
xdenl=(2.0*2.0*del*xlam)/(terme2*x(l)) - 3.0 

endif 
disp3(1)=xnuml/xdenl 

inner node strain 

strainl=disp3(l)/rinner 

outer node 

xnum2=4.0*disp3(nodes-1)-disp3(nodes-2) + 
& (termel/terme2)*2.0*del*cte*temp*func(nodes) 

if(g.eq.1) then 
xden2=(2.0*delxxlam)/(terme2*x(nodes)) + 3.0 

endif 

if(g.eq.2) then 
xden2=(2.0*2.0*del*xlam)/(terme2*x(nodes)) + 3.0 

endif 
disp3(nodes)=xnum2/xden2 

outer node strain 

strainn=disp3(nodes)/router 

***calculate the hoop stress at inner node, node lx** 

if(g.eq.1) then 
taul=(xlam/(2.0*del))*(-3.O*disp3(1) + 4.0*disp3(2) - 

& disp3(3)) + (terme2*disp3(l))/x(l) - 
& termel*cte*temp*func(l) 

endif 

if(g.eq.2) then 
taul=(xlam/(2.0kdel))*(-3.O*disp3(1) + 4.0*disp3(2) - 

& disp3(3)) + (terme2*disp3(l))/(x(l)*(l.O-poiss)) - 
& termel*cte*temp*func(l) 
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endif 
C 

C ***calculate the hoop stress at outer node*** 
C 

if(g.eq.1) then 
taun=(xlam/(2.0xdel))*(3.0*disp3(nodes) - 

& 4.0*disp3(nodes-1) + disp3(nodes-2)) + 
& (terme2*disp3(nodes))/x(nodes) - 
& termel*cte*temp*func(nodes) 

endif 
C 

if(g.eq.2) then 
taun=(xlam/(2.0*del))*(3.O*disp3(nodes) - 

& 4.0*disp3(nodes-1) + disp3(nodes-2)) + 
& (terme2*disp3(nodes))/(x(nodes)*(l.O-poiss)) - 
& termel*cte*temp*func(nodes) 

endif 
C 

C print out results every nprt timesteps 
C 

C ***convert time to microsecond, displacement to mils 
C and stress to ksi*** 
C 

if(mod(k,nprt).eq.O) then 
write(ll,llO) time*l.Oe+06, temp*func(l) 
write(12,120) time*l.Oe+06, temp*func(nodes) 
write(13,130) time*l.Oe+06, disp3(1)*3.937008e+02 
write(14,140) time*l.Oe+06, disp3(nodes)*3.937008e+02 
write(15,150) time*l.Oe+06, taul*1.450378e-08 
write(16,160) time*l.Oe+06, taun*1.450378e-08 
write(18,180) strainl, taul*1.450378e-08 
write(19,190) strainn, taun*1.450378e-08 

endif 
C 

C ***print out spatial temp. dist. at last time step*** 
C 

if(k.eq.maxtime) then 
do 40 i=l,nodes 

write(17,170) x(i)/2.54, temp*func(i) 
40 continue 

endif 
C 

C ***update the displacements for the next timestep*** 
C 

do 45 i=l,nodes 
displ(i)=disp2(i) 
disp2(i)=disp3(i) 

45 continue 
C 

C ***proceed to next time step*** 
C 

100 continue 
C 

C 
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C 

C 

110 format(' ',g12.5,5x,g12.5) 
120 format(' ',g12.5,5x,g12.5) 
130 format(‘ ',g12.5,5x,g12.5) 
140 formatt' ',g12.5,5x,g12.5) 
150 formatt' ',g12.5,5x,g12.5) 
160 formatt' ',g12.5,5x,g12.5) 
170 formatl' ',g12.5,5x,g12.5) 
180 formatt' ',g12.5,5x,g12.5) 
190 format(' ',g12.5,5x,g12.5) 

C 

C 

C 

write(*,*) 
write(*, *) 'DONE' 
stop 
end 
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8.0 APPENDIX B 

The following is the DYNA3D input deck (excluding node and element definitions) for the 
first pulse transient considered, the 41~s FWHM pulse with a maximum temperature rise 
of 420°C. The general approach is described in Section 2.2.2. 

dyna hollow sphere 
* 

88 large 

* This file was created using TrueGrid by XYZ Scientific Applications, Inc. 
* For further information, call (510) 373-0628 or write to: 
* 
* XYZ Scientific Applications, Inc. 
* 1324 Concannon Blvd. 
* Livermore, Ca. 94550 
* 
* 
*-m-m--------------- ANALYSIS INPUT DATA FOR DmA3,, -----------------me* 
* TrueGrid version 1.3.23 dated 12/15/97 
* generated on Sep 3 1999 at 15:26:00 
* 
*-------------------------- CONfJll~L (-- #2 ---------------------~~~~~~* 
* 

* number of materials[ll nodal points[2] solid hexahedron elements131 beam 
* elements[4] I-node shell elements[S] 8-node solid shell elements[6] 
* interface segments171 interface interval[8] min. shell time step[9] 

1 22831 20480 0 0 0 0 O.OOOE+OO 0.0 
* 
*-------------------------- CONTROL C- #3 --------------------------v* 
* 
* number of time history blocks for nodes[l] hexahedron elements[2] beam 
* elements131 shell elements[l] thick shell elements[5] and report interval[6] 
* reaction forces print flag[i'] discrete element forces print flag[8] 
* element deletion/SAND database flag[9] 

0 0 0 0 0 0 0 0 1 
* 
*-------------------------- CONTROL C- #4 ---------------------------* 
* 
* number of sliding boundary planes[l] 
* sliding boundary planes w/ failure121 points in density vs depth 
* curve[3] brode function flag[l] number of rigid body merge cards[S] 
* nodal coordinate format[6] force cross sections[7] 
* cross section forces interval[8] 

0 0 0 0 Oe20.9 0 O.OOOE+OO 

*-------------------------- CONTROL C-D #5 ---------------------------* 
* 
* number of load curves[ll concentrated nodal loads[2] element sides having 
* pressure loads appliedi velocity/acceleration boundary condition cards[41 
* rigid walls (stonewalls)[5] nodal constraint cards[6] initial condition 
* parameter[7] sliding interfaces[8] base acceleration in x[9] y[lO] and 
* z-direction[ll] angular velocity about x[12] y[13] and z-axis[l4] number of 
* solid hexahedron elements for momentum deposit[l5] detonation points[l6] 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
* 
*-------------------------- CONTROL C- #fj ~~~-~~~~~~-~----_--_-~~~---* 
* 
* termination time111 time history dump interval[l] complete dump interval[3] 
* time steps between restart dumps[4] time steps between running restart 
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* dumps[51 initial time step161 sliding interface penalty factor[7] thermal 
* effects option[E] default viscosity flag[9] computed time step factor[lO] 

3.000E-04 O.OOOE+OO 1.0003-06 0 100 O.OOOE+OO O.OOOE+OO 1 0 O.OOOE+OO 
* 
*-------------------------- C-JNTR& CARD #7 ---------------------------* 
* 
* number of joint definitions[l] rigid bodies with extra nodes[2] shell- 
* solid interfacest31 tie-breaking shell slidelines[4] tied node sets with 
*'failure[5] limiting time step load curve number[6] springs-dampers-masses 
* flag[7] rigid bodies with inertial properties[8] dump shell strain flag[9] 
* Hughes-Liu shell update[lO] shell thickness change[ll] 
* shell formulation[l2] number of nonreflecting boundary segments[l3] 

0 0 0 0 0 0 0 0 0 0 0 0 0 
* 
X____---------------------- CONTROL CARD #8 m--------------w-------____* 
* 
* number of point constraint nodes[l] coordinate systems for constraint 
* nodes[2] minimum step factor131 number of beam integration rules[l] 
* maximum integration points for beams[5] number of shell integration rules[6] 
* maximum integration points for shells[7] relaxation iterations between 
* checks[8] relaxation tolerance[9] dynamic relaxation factor[lO] dynamic 
* relaxation time step factor[ll] I-node shell time step option[l2] 

0 0 O.OOOE+OO 0 0 0 0 250 l.OOOE-03 9.9503-01 O.OOOE+OO 0 
* 
*-------------------------- l-J-J)pR~L CARD #g ---------------------------* 

* 

* plane stress plasticity[l] printout flag[2] number of 1D slidelines[3] 
* relaxation databaset41 Rayleigh coefficient[5] materials w/Rayleigh damping[6] 

0 0, 0 0 O.OOOE+OO 0 

*--------------------------- MATERIAL CARDS ---------------------------* 

* 

1 41.72003+01 0 00.0000E+00 00.000OE+OOO.OOOOE+OO 0 0 0 
U-1OMo 

O.OOOE+OO 5.000E+02 O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO 
9.000E+11 9.000E+ll O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO 
3.000E-01 3.000E-01 O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO 
1.400E-05 1.400E-05 O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO 
O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.O,OOE+OO 
O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO 

* 
*-------------------------- NODE DEFINITIONS --------------------------* 
* 
*_______------------------- ELEMENT ,,EFI&,ITI(-JNS -----------------------* 

* 

*-------------------------- L(,m CURVES _______________ 

* 

1 23 0 
O.OOOE+OO O.OOOE+OO 
l.OOOE-05 1.851E-01 
2.000E-05 4.3653-01 
3.000E-05 l.O28E+OO 
4.000E-05 2.4193+00 
5.000E-05 5.6633+00 
6.000E-05 1.312E+Ol 
7.000E-05 2.9703+01 
8,00OE-05 6.3943+01 
9.000E-05 1.2503+02 
l.OOOE-04 2.100E+02 

----------------* 
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zo+3ooz’P PO-3000’E 
zo+3ooz’P PO-BOOT.‘z 
ZO+366T’P PO-3000-Z 
ZO+386-C’P PO-3006.T 
ZO+3961’6 PO-3008-T 
ZO+306I’P PO-3OOL’T 
zo+39LT.‘P 60-3009-I: 
ZO+aEPT*P PO-3OOS”1: 
ZO+3690’6 PO-BOOP’T 
ZO+BE06’E PO-3OOE.I: 
Z0+3T95’E PO-3OOZ’T. 
ZO+3O’ii6’Z PO-3001’1 



10.0 APPENDIX D 

The following are ALE3D generator input files for the first pulse transient considered, the 
41~s FWHM pulse with a maximum temperature rise of 420°C. Two generator input files 
are included in this appendix. The first, directly below, uses the ‘heatgen fixed’ keyword in 
the Boundary Block in order to specify the fission pulse in terms of specific power vs. time 
according to Equation 10. Thus, only the Hydro Block is required. 

The second file specifies the pulse in terms of nodal temperature vs. time according to 
Equation 9. This latter approach uses the ‘heat temperature’ keyword and therefore 
requires fully coupled hydroithermal diffusion with both a Hydro and Thermal Block. For 
details, see the discussion in Section 2.2.4. 

ALE-GENERATOR INPUT FILE 1 

# ale hollow sphere 
# 
# unit system is B Div (g,cm,micros,Mbar,Mbar-cc) 
# 
OUTPUT 

dumptime 100.0 300.0 #dump restart files every 100microsecs 
dumpac 1 #exception - dump at cycle 1 
restartvar add x y z x0 y0 z0 #add these to the defaults on p.39 
plotvar add x y z x0 y0 z0 xdiff ydiff zdiff sx sy sxnorm synorm 

plottime 100.0 300.0 #plot file every 100microsecs 

# Create derived variables representing the radial displacements 
# of nodes with respect to their original positions. 

derivedvar xdiff diff x x0 #variable xdiff=x-x0 
derivedvar ydiff diff y y0 #variable ydiff=y-y0 
derivedvar zdiff diff z z0 #variable zdiff=z-z0 

# Create variables to convert deviatoric stresses (sx,sy) 
# to normal stresses (sxnorm,synorm). 

derivedvar sxnorm diff sx p #variable sxnorm=sx-p 
derivedvar synorm diff sy p #variable synorm=sy-p 

# Collect time histories of displacement and stress for 
# interior and exterior nodes that lie on the x,y,& z axes. 
# These nodes have been constrained to only move radially. 

timehist x 15,352 22392 
timehist y 15352 22392 #as a check on symmetry bc 
timehist z 15352 22392 #as a check on symmetry bc 

timehist y 8212 8532 
timehist x 8212 8532 #as a check on symmetry bc 
timehist z 8212 8532 #as a check on symmetry bc 

timehist z 1 17 
timehist x 1 17 #as a check on symmetry bc 
timehist y 1 17 #as a check on symmetry bc 
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timehist xdiff 15352 22392 
timehist ydiff 8212 8532 
timehist zdiff 1 17 

timehist sxnorm 1 6601 
timehist sxnorm 7041 7341 
timehist synorm 13441 13456 

timehist tkelv 1 6601 7041 7341 13441 13456 #zonal temperature 
timehist nodet 1 17 #nodal temperature, only works with thermal block 

timehist p 1 6601 7041 7341 13441 13456 #zonal pressure 
timehist e 1 6601 #zonal energy 
timehist v 1 6601 #relative volume 

timehist-time 1.0 300. #plot time histories every microsecond 
stoptime 300. #simulation ends at 300microseconds 

notify 1 

CONTROL 

#energy,pressure,velocity,stress cutoffs 
e-cut l.Oe-12 
p-cut l.Oe-12 
u-cut l.Oe-12 
strsscut l.Oe-15 

#heat gen. rate per unit mass, variation for material 1 w/time 
#4lmicrosec F'WHM, 420C max temp increase 

table 1 noop #units are time in microsecs vs q in Bar-cc/g-microsec 
0.0 7.89483-09 
10.0 1.86193-08 
20.0 4.38843-08 
30.0 1.03263-07 
40.0 2.42053-07 
50.0 5.62333-07 
60.0 1.2796E-06 
70.0 2.77833-06 
80.0 5.45623-06 
90.0 8.83743-06 
100.0 1.05683-05 
110.0 8.83743-06 
120.0 5.45623-06 
130.0 2.77833-06 
140.0 1.27963-06 
150.0 5.62333-07 
160.0 2.42053-07 
170.0 1.03263-07 
180.0 4.38843-08 
190.0 1.86193-08 
200.0 7.89483-09 
210.0 3.34633-09 
220.0 1.4183E-09 
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230.0 6.0105E-10 
240.0 2.54723-10 
250.0 1.07943-10 
260.0 4.57453-11 
270.0 1.93863-11 
280.0 8.21573-12 
290.0 3.48163-12 
300.0 l-47543-12 
301.0 l-35403-12 

#initial timestep 0.01 microseconds 
dtinit 0.01 

END 

HYDRO 

linqflag 1 #use speed of sound for linear art. viscosity 

#use defaults: explicit hydro, purely LaGrangian 

#initialize engr material 
efrmtp 1 #initialize energies and volumes based on input- 

# pressures and temperatures. 
efrmtptol l.Oe-8 

END 

MATERIAL u-1Omo 1 
matinput 

t0 0.1 e0 l.e-10 v0 1.0 p0 0.0 rho 17.2 
czero 1.4 qfb 0.0 crq 0.1 pmin -1.0 

enginput is01 54 #engr. model 54, akin to dyna3d model 4 
initialyieldstress #units in Bar, set high to never yield 

0.1 100. 100. 100. 200. 100. 300. 100. 400. 100. 500. 100. 
youngsmod #units in Mbar 

0.1 0.9 100. 0.9 200. 0.9 300. 0.9 400. 0.9 500. 0.9 
poissonratio #unitless 

0.1 0.3 100. 0.3 200. 0.3 300. 0.3 400. 0.3 500. 0.3 
coeffthermalexpansion #volumetric-cte=3.O*linear-cte 

0.1 4.2e-5 100. 4.2e-5 200. 4.2e-5 300. 4.2e-5 400. 4.2e-5 
500. 4.2e-5 

plasticmod 
0.1 100, 100. 100. 200. 100,. 300. 100. 400. 100. 500. 100. 

tablcv #directly enter values for cv, in Bar-cc/gC 
0.1 l.l7236e-06 100. l.l7236e-06 200. l.l7236e-06 
300. l.l7236e-06 400. l.l7236e-06 500. l.l7236e-06 

THERMAL 

heatcond off #no thermal,ie no heat conduction 

END 
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